Supports Desikan-Killiany-Tourville
labeling and deep 'Atropos'
.
Usage
antspynet_desikan_killiany_tourville_labeling(
x,
do_preprocessing = TRUE,
return_probability_images = FALSE,
do_lobar_parcellation = FALSE,
verbose = TRUE
)
antspynet_deep_atropos(
x,
do_preprocessing = TRUE,
use_spatial_priors = TRUE,
aseg_only = TRUE,
verbose = TRUE
)
Arguments
- x
'NIfTI'
image or path to the image that is to be segmented- do_preprocessing
whether
x
is in native space and needs the be registered to template brain before performing segmentation; default is true since the model is trained with template brain. If you want to manually process the image, seeantspynet_preprocess_brain_image
- return_probability_images
whether to return probability images
- do_lobar_parcellation
whether to perform lobar 'parcellation'
- verbose
whether to print out the messages
- use_spatial_priors
whether to use
'MNI'
partial tissue priors- aseg_only
whether to just return the segmented image
Value
One or a list of 'ANTsImage'
image instances. Please print
out antspynet$desikan_killiany_tourville_labeling
or
antspynet$deep_atropos
to see the details.
Examples
# Print Python documents
if(interactive() && ants_available("antspynet")) {
antspynet <- load_antspynet()
print(antspynet$deep_atropos)
print(antspynet$desikan_killiany_tourville_labeling)
}