rpyANTs
was detached from a RAVE
(Reproducible Analysis and Visualization of iEEG
) module. It is now a standalone package that connects ANTsPy
with R using seamless shared-memory.
This package was originally created for the following three purposes:
- Portability
- Make
ANTs
easily accessible from the latest R and all major operating systems - Allow
RAVE
or other code/scripts/frameworks to be reproducible since the code will be OS-invariant
- Make
- Easy to install
- Automated installation that requires very little to no knowledge about compilers
- Installing
rpyANTs
takes less than 10 minutes - The goal is to have minimum human intervention
- Easy to embed
- Python scripts using
ANTsPy
can be executed fromrpyANTs
and R with no modification - Built-in bilateral data conversions between Python and R allows image generated from Python to be analyzed/visualized in R and vice versa
- Python scripts using
Disclaimer: This is a third-party maintained R package for
ANTs
. If you are looking for theANTsR
package byB.B Avants
, please check here.
Installation
The installation requires one-line extra setup
# Install from CRAN
install.packages("rpyANTs")
# Install from nightly dev builder
# install.packages("rpyANTs", repos = "https://dipterix.r-universe.dev")
# set up ANTs
rpyANTs::install_ants()
install_ants
creates an isolated Python
environment managed by RAVE
. This environment does not conflict nor affect your existing Python installations.
Upgrade ANTs
To upgrade ANTs
, first update rpyANTs
, then upgrade ANTsPyx
install.packages("rpyANTs")
rpymat::add_packages(packages = "antspyx", pip = TRUE)
How to use
To load ANTs
library(rpyANTs)
# Whether ANTs is available
ants_available()
# Load ANTs into R
ants
In R, we use $
to get module functions or class members. For example:
ants$add_noise_to_image
#> <ANTs Python Wrapper>
#> Help on function add_noise_to_image in module ants.utils.add_noise_to_image:
#>
#> add_noise_to_image(image, noise_model, noise_parameters)
#> Add noise to an image using additive Guassian, salt-and-pepper,
#> shot, or speckle noise.
#>
#> ANTsR function: `addNoiseToImage`
#>
#> Arguments
#> ---------
#> image : ANTsImage
#> scalar image.
#>
#> noise_model : string
#> 'additivegaussian', 'saltandpepper', 'shot', or 'speckle'.
#>
#> noise_parameters : tuple or array or float
#> 'additivegaussian': (mean, standardDeviation)
#> 'saltandpepper': (probability, saltValue, pepperValue)
#> 'shot': scale
#> 'speckle': standardDeviation
#>
#> Returns
#> -------
#> ANTsImage
#>
#> Example
#> -------
#> >>> import ants
#> >>> image = ants.image_read(ants.get_ants_data('r16'))
#> >>> noise_image = ants.add_noise_to_image(image, 'additivegaussian', (0.0, 1.0))
#> >>> noise_image = ants.add_noise_to_image(image, 'saltandpepper', (0.1, 0.0, 100.0))
#> >>> noise_image = ants.add_noise_to_image(image, 'shot', 1.0)
#> >>> noise_image = ants.add_noise_to_image(image, 'speckle', 1.0)
#>
#> *** Above documentation is for Python.
#> *** Please use `$` instead of `.` for modules and functions in R
#> <function add_noise_to_image at 0x113867060>
The following R code translates Python code into R:
# >>> img = ants.image_read(ants.get_ants_data('r16'))
img <- ants$image_read(ants$get_ants_data('r16'))
# >>> noise_image1 = ants.add_noise_to_image(img, 'additivegaussian', (0.0, 1.0))
noise_image1 <- ants$add_noise_to_image(
img, 'additivegaussian',
noise_parameters = tuple(0.0, 1.0)
)
# >>> noise_image2 = ants.add_noise_to_image(img, 'saltandpepper', (0.1, 0.0, 100.0))
noise_image2 <- ants$add_noise_to_image(
img, 'saltandpepper',
noise_parameters = tuple(0.1, 0.0, 100.0)
)
# >>> noise_image3 = ants.add_noise_to_image(img, 'shot', 1.0)
noise_image3 <- ants$add_noise_to_image(
img, 'shot',
noise_parameters = 1.0
)
# >>> noise_image4 = ants.add_noise_to_image(img, 'speckle', 1.0)
noise_image4 <- ants$add_noise_to_image(
img, 'speckle',
noise_parameters = 1.0
)
# >>> trans = ants.create_ants_transform(
# >>> dimension=2, matrix=[[0.707, 0.707], [-.707, 0.707]],
# >>> translation=[-53, 128])
trans <- as_ANTsTransform(matrix(
c(0.707, 0.707, -53,
-0.707, 0.707, 128),
nrow = 2, byrow = TRUE
), dimension = 2)
# >>> noise_image4 = trans.apply_to_image(noise_image4)
noise_image4 <- trans$apply_to_image(noise_image4)
To load imaging data into R
# Use [] to convert ANTsImage into R array
is.array(img[])
#> [1] TRUE
# plot via R
layout(matrix(c(1,1,2,3,1,1,4,5), nrow = 2, byrow = TRUE))
par(mar = c(0.1, 0.1, 0.1, 0.1), bg = "black", fg = "white")
pal <- grDevices::gray.colors(256, start = 0, end = 1)
image(img[], asp = 1, axes = FALSE,
col = pal, zlim = c(0, 255), ylim = c(1, 0))
image(noise_image1[], asp = 1, axes = FALSE,
col = pal, zlim = c(0, 255), ylim = c(1, 0))
image(noise_image2[], asp = 1, axes = FALSE,
col = pal, zlim = c(0, 255), ylim = c(1, 0))
image(noise_image3[], asp = 1, axes = FALSE,
col = pal, zlim = c(0, 255), ylim = c(1, 0))
image(noise_image4[], asp = 1, axes = FALSE,
col = pal, zlim = c(0, 255), ylim = c(1, 0))
Advanced use case
Run/Debug Python
scripts
rpyANTs
ports functions that allows to run Python
scripts. For example:
library(rpyANTs)
script_path <- tempfile(fileext = ".py")
writeLines(con = script_path, text = r"(
# This is Python script
import ants
print(ants.__version__)
)")
run_script(script_path)
You can also run Python
interactive in R (yes, you are correct). Simply run
rpyANTs::repl_python()
The console prefix will change from >
to >>>
, meaning you are in Python
mode:
> rpyANTs::repl_python()
Python 3.8.16 (/Users/dipterix/Library/r-rpymat/miniconda/envs/rpymat-conda-env/bin/python3.8)
Reticulate 1.26 REPL -- A Python interpreter in R.
Enter 'exit' or 'quit' to exit the REPL and return to R.
>>>
Try some Python code!
To exit Python mode, type exit
(no parenthesis) and hit enter key
Data conversions
Native R variables can be easily converted to Python
and back via r_to_py
and py_to_r
.
For example
# R to Python
r_to_py(1)
#> 1.0
r_to_py(1L)
#> 1
# Python to R
py_obj <- py_list(1:3)
class(py_obj) # <- this is a python object
#> [1] "python.builtin.list" "python.builtin.object"
py_to_r(py_obj)
#> [1] 1 2 3
You can also use variables created in R from Python or vice versa:
In the following example, an R object object_r
is created. In Python, it can be accessed (read-only) via r.object_r
> object_r <- c(1,2,3)
> repl_python()
Python 3.8.16 (/Users/dipterix/Library/r-rpymat/miniconda/envs/rpymat-conda-env/bin/python3.8)
Reticulate 1.26 REPL -- A Python interpreter in R.
Enter 'exit' or 'quit' to exit the REPL and return to R.
>>> r.object_r
[1.0, 2.0, 3.0]
Similarly, a Python object object_py
is created, and it can be read from py$object_py
:
Known issues
Variable types
R is not a type-rigid language. Some functions in ANTsPy
require specific variable types that are often vague in R. For example the dimension
argument in function ants$create_ants_transform
needs to be an integer, but R’s default numerical values are double
. In this case, variable formats need to be explicitly given.
Here are several examples
- Explicit integers
# ants$create_ants_transform(dimension = 3) # <- error
ants$create_ants_transform(dimension = 3L) # < XXXL is an explicit integer
-
Tuple
,list
, anddictionary
A Python tuple
is a vector that cannot alter lengths.
# Wrong as `aff_iterations` needs to be a tuple
# ants$registration(fixed, moving, ..., aff_iterations = c(6L, 4L, 2L, 1L))
ants$registration(fixed, moving, ..., aff_iterations = tuple(6L, 4L, 2L, 1L))
Similar conversions can be done via py_list
, py_dict
.
- Convert
TRUE
vs.FALSE
A Python module can be imported with auto-conversion (argument convert
) set to TRUE
or FALSE
. When auto-conversion is on, the Python function results will be converted to R objects automatically. For example,
np <- import("numpy", convert = TRUE)
np$eye(4L)
#> [,1] [,2] [,3] [,4]
#> [1,] 1 0 0 0
#> [2,] 0 1 0 0
#> [3,] 0 0 1 0
#> [4,] 0 0 0 1
The numpy
array is automatically translated as an R matrix. While this is convenient, this automated conversion could cause some issues when the function results are further passed into another Python function. For example, the following code will raise errors.
> np <- import("numpy", convert = TRUE)
> ants <- load_ants()
>
> image <- ants$image_read(ants$get_ants_data('mni'))
> image_array <- np$asarray(list(image, image))
>
> ants$plot_grid(image_array, slices = 100L)
Error in py_call_impl(callable, dots$args, dots$keywords) :
Matrix type cannot be converted to python (only integer, numeric, complex, logical, and character matrixes can be converted
The error is raised because numpy
has convert=TRUE
, hence image_array
is converted to an R list with each element being a ANTsImage
instance. Calling ants$plot_grid
needs R-to-Python conversion for all input variables, including image_array
. However this conversion makes image_array
a Python list instead of numpy
array, violating the input format.
A safer way is to keep in the Python format, i.e. convert=FALSE
. In this mode, function results will not be converted back to R (you need to manually make conversion by yourself via py_to_r
). Now the following example works.
> np <- import("numpy", convert = TRUE)
> ants <- load_ants()
>
> image <- ants$image_read(ants$get_ants_data('mni'))
> image_array <- np$asarray(list(image, image))
>
> ants$plot_grid(image_array, slices = 100L)
Object
ants
inrpyANTs
is a non-conversion Python module. Objectpy
is a auto-conversion Python module
Operators
In Python, operators on ANTsImage
, such as img > 5
are defined. Such operators is being supported in R as S3
generic functions. Don’t worry if you don’t know what is S3
generic, see the following examples:
library(rpyANTs)
image <- ants$image_read(ants$get_ants_data('mni'))
print(image)
dim(image)
range(image)
y1 <- (image > 10) * 8000
y2 <- image
y2[y2 < 10] <- 4000
y3 <- log(image + 1000)
y3 <- (y3 - min(y3)) / (max(y3) - min(y3)) * 8000
ants_plot_grid(
list(image, y1, y2, y3),
slices = 100, shape = c(1, 4),
vmin = 0, vmax = 8000
)
Although the operator generics have been implemented for common classes such as ANTsImage
and ANTsTransform
. Many are still under development and not supported. In this case, you might want to use the following workaround methods. You are more than welcome to post a wish-list or issue ticket to the Github
repository
Alternative version 1: call operators directly
library(rpyANTs)
image <- ants$image_read(ants$get_ants_data('r16'))
# The followings are the same
# threshold <- image > 10
threshold <- image$`__gt__`(10)
ants$plot(threshold)
Work-around version 2: If you don’t know how Python operators work, use Python directly
library(rpyANTs)
image <- ants$image_read(ants$get_ants_data('r16'))
# Create an R variable from Python!
py_run_string("r.threshold = r.image > 10", local = TRUE, convert = FALSE)
ants$plot(threshold)
Citation
This is a general citation for ANTs
:
Avants, B.B., Tustison, N. and Song, G., 2009. Advanced normalization tools (ANTS). The Insight Journal, 2(365), pp.1-35.
If you are using rpyANTs
through RAVE
or YAEL
, please also cite:
Magnotti, J.F., Wang, Z. and Beauchamp, M.S., 2020. RAVE: Comprehensive open-source software for reproducible analysis and visualization of intracranial EEG data. NeuroImage, 223, p.117341.