Compute quantiles
Usage
fast_quantile(x, prob = 0.5, na.rm = FALSE, ...)
fast_median(x, na.rm = FALSE, ...)
fast_mvquantile(x, prob = 0.5, na.rm = FALSE, ...)
fast_mvmedian(x, na.rm = FALSE, ...)
Value
fast_quantile
and fast_median
calculate univariate
quantiles (single-value return); fast_mvquantile
and fast_mvmedian
calculate multivariate quantiles (for each column, result lengths equal to
the number of columns).
Examples
fast_quantile(runif(1000), 0.1)
#> [1] 0.0865877
fast_median(1:100)
#> [1] 50.5
x <- matrix(rnorm(100), ncol = 2)
fast_mvquantile(x, 0.2)
#> [1] -0.8459934 -1.2524877
fast_mvmedian(x)
#> [1] 0.10661071 -0.08524222
# Compare speed for vectors (usually 30% faster)
x <- rnorm(10000)
microbenchmark::microbenchmark(
fast_median = fast_median(x),
base_median = median(x),
# bioc_median = Biobase::rowMedians(matrix(x, nrow = 1)),
times = 100, unit = "milliseconds"
)
#> Unit: milliseconds
#> expr min lq mean median uq max neval
#> fast_median 0.076673 0.1199835 0.1319121 0.1330685 0.1489780 0.174526 100
#> base_median 0.142326 0.1577645 0.1681746 0.1648330 0.1745705 0.267760 100
# Multivariate cases
# (5~7x faster than base R)
# (3~5x faster than Biobase rowMedians)
x <- matrix(rnorm(100000), ncol = 20)
microbenchmark::microbenchmark(
fast_median = fast_mvmedian(x),
base_median = apply(x, 2, median),
# bioc_median = Biobase::rowMedians(t(x)),
times = 10, unit = "milliseconds"
)
#> Unit: milliseconds
#> expr min lq mean median uq max neval
#> fast_median 0.645905 0.705013 0.7510561 0.7260195 0.774124 1.000898 10
#> base_median 2.614148 2.676183 2.7363162 2.7343820 2.758456 2.983366 10