Speed up covariance calculation for large matrices. The
default behavior is the same as cov
('pearson'
,
no NA
handling).
Arguments
- x
a numeric vector, matrix or data frame; a matrix is highly recommended to maximize the performance
- y
NULL (default) or a vector, matrix or data frame with compatible dimensions to x; the default is equivalent to
y = x
- col_x
integers indicating the subset indices (columns) of
x
to calculate the covariance, orNULL
to include all the columns; default isNULL
- col_y
integers indicating the subset indices (columns) of
y
to calculate the covariance, orNULL
to include all the columns; default isNULL
- df
a scalar indicating the degrees of freedom; default is
nrow(x)-1
Value
A covariance matrix of x
and y
. Note that there is no
NA
handling. Any missing values will lead to NA
in the
resulting covariance matrices.
Examples
# Set ncores = 2 to comply to CRAN policy. Please don't run this line
ravetools_threads(n_threads = 2L)
x <- matrix(rnorm(400), nrow = 100)
# Call `cov(x)` to compare
fast_cov(x)
#> [,1] [,2] [,3] [,4]
#> [1,] 1.30987040 0.013002746 0.06263758 0.031019785
#> [2,] 0.01300275 0.905270345 0.02027502 -0.007362583
#> [3,] 0.06263758 0.020275016 0.77420186 -0.147601612
#> [4,] 0.03101978 -0.007362583 -0.14760161 1.287895141
# Calculate covariance of subsets
fast_cov(x, col_x = 1, col_y = 1:2)
#> [,1] [,2]
#> [1,] 1.30987 0.01300275
# \donttest{
# Speed comparison, better to use multiple cores (4, 8, or more)
# to show the differences.
ravetools_threads(n_threads = -1)
x <- matrix(rnorm(100000), nrow = 1000)
microbenchmark::microbenchmark(
fast_cov = {
fast_cov(x, col_x = 1:50, col_y = 51:100)
},
cov = {
cov(x[,1:50], x[,51:100])
},
unit = 'ms', times = 10
)
#> Unit: milliseconds
#> expr min lq mean median uq max neval
#> fast_cov 1.527198 1.541936 1.790997 1.564553 1.638705 3.734895 10
#> cov 5.336953 5.359815 5.422919 5.413061 5.448160 5.640749 10
# }