Speed up covariance calculation for large matrices. The
default behavior is similar cov. Please remove any NA
prior to calculation.
Arguments
- x
a numeric vector, matrix or data frame; a matrix is highly recommended to maximize the performance
- y
NULL (default) or a vector, matrix or data frame with compatible dimensions to x; the default is equivalent to
y = x- col1
integers indicating the subset (columns) of
xto calculate the covariance; default is all the columns- col2
integers indicating the subset (columns) of
yto calculate the covariance; default is all the columns- df
a scalar indicating the degrees of freedom; default is
nrow(x)-1
Value
A covariance matrix of x and y. Note that there is no
NA handling. Any missing values will lead to NA in the
resulting covariance matrices.
Examples
x <- matrix(rnorm(400), nrow = 100)
# Call `cov(x)` to compare
fastcov2(x)
#> [,1] [,2] [,3] [,4]
#> [1,] 1.19327738 -0.21555903 0.05763812 0.04147075
#> [2,] -0.21555903 1.02903958 -0.06026528 0.03834091
#> [3,] 0.05763812 -0.06026528 0.89162207 0.05189107
#> [4,] 0.04147075 0.03834091 0.05189107 0.86620947
# Calculate covariance of subsets
fastcov2(x, col1 = 1, col2 = 1:2)
#> [,1] [,2]
#> [1,] 1.193277 -0.215559
# Speed comparison
x <- matrix(rnorm(100000), nrow = 1000)
microbenchmark::microbenchmark(
fastcov2 = {
fastcov2(x, col1 = 1:50, col2 = 51:100)
},
cov = {
cov(x[,1:50], x[,51:100])
},
unit = 'ms', times = 10
)
#> Unit: milliseconds
#> expr min lq mean median uq max neval
#> fastcov2 1.414862 1.430040 1.600226 1.468647 1.671480 2.235905 10
#> cov 5.353916 5.405972 5.441779 5.429286 5.439836 5.646933 10