Speed up covariance calculation for large matrices. The
default behavior is similar cov
. Please remove any NA
prior to calculation.
Arguments
- x
a numeric vector, matrix or data frame; a matrix is highly recommended to maximize the performance
- y
NULL (default) or a vector, matrix or data frame with compatible dimensions to x; the default is equivalent to
y = x
- col1
integers indicating the subset (columns) of
x
to calculate the covariance; default is all the columns- col2
integers indicating the subset (columns) of
y
to calculate the covariance; default is all the columns- df
a scalar indicating the degrees of freedom; default is
nrow(x)-1
Value
A covariance matrix of x
and y
. Note that there is no
NA
handling. Any missing values will lead to NA
in the
resulting covariance matrices.
Examples
x <- matrix(rnorm(400), nrow = 100)
# Call `cov(x)` to compare
fastcov2(x)
#> [,1] [,2] [,3] [,4]
#> [1,] 1.17251985 -0.1463312 0.08239227 0.1336536
#> [2,] -0.14633119 1.1509356 -0.12009329 -0.0259273
#> [3,] 0.08239227 -0.1200933 0.91439945 0.0385713
#> [4,] 0.13365361 -0.0259273 0.03857130 0.8697899
# Calculate covariance of subsets
fastcov2(x, col1 = 1, col2 = 1:2)
#> [,1] [,2]
#> [1,] 1.17252 -0.1463312
# Speed comparison
x <- matrix(rnorm(100000), nrow = 1000)
microbenchmark::microbenchmark(
fastcov2 = {
fastcov2(x, col1 = 1:50, col2 = 51:100)
},
cov = {
cov(x[,1:50], x[,51:100])
},
unit = 'ms', times = 10
)
#> Unit: milliseconds
#> expr min lq mean median uq max neval
#> fastcov2 1.779243 1.784803 1.852124 1.80963 1.864282 2.190993 10
#> cov 5.284192 5.359873 5.472391 5.40680 5.430284 6.238951 10