Life cycle: experimental.
Read "Neurodata Without Borders" ('NWB' format) file. Unlike other readers
read_nwb
returns low-level 'Python' class handler via pynwb
module.
Usage
read_nwb(file, mode = c("r", "w", "r+", "a", "w-", "x"), ...)
Arguments
- file
path to 'NWB' file
- mode
file open mode; default is
'r'
(read-only)- ...
passed to
NWBHDF5IO
initialize function
Value
A NWBHDF5IO
instance
Examples
if(ieegio_sample_data("nwb_sample.nwb", test = TRUE)) {
file <- ieegio_sample_data("nwb_sample.nwb")
# Create NWBIO container
container <- read_nwb(file)
# Open connection
container$open()
# read meta data
data <- container$read()
data
# get `test_timeseries` data
ts_data <- data$get_acquisition("test_timeseries")
ts_data
# read timeseries data into memory
ts_arr <- ts_data$data[]
ts_arr
# Convert Python array to R
# using `rpymat::py_to_r(ts_arr)` or
as.numeric(ts_arr)
# Make sure you close the connection
container$close()
}
#> * Installing Miniconda -- please wait a moment ...
#> * Downloading 'https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh' ...
#> + /usr/bin/bash /tmp/RtmpqWw5W5/Miniconda3-latest-Linux-x86_64.sh -b -p '/home/runner/.local/share/r-rpymat/miniconda'
#> + /home/runner/.local/share/r-rpymat/miniconda/bin/conda create --yes --name r-reticulate 'python=3.10' numpy --quiet -c conda-forge
#> * Miniconda has been successfully installed at "~/.local/share/r-rpymat/miniconda".
#> + /home/runner/.local/share/r-rpymat/miniconda/bin/conda create --yes --prefix /home/runner/.local/share/r-rpymat/miniconda/envs/rpymat-conda-env 'python=3.10' --quiet -c conda-forge
#> + /home/runner/.local/share/r-rpymat/miniconda/bin/conda install --yes --prefix /home/runner/.local/share/r-rpymat/miniconda/envs/rpymat-conda-env -c conda-forge numpy
#> + /home/runner/.local/share/r-rpymat/miniconda/bin/conda install --yes --prefix /home/runner/.local/share/r-rpymat/miniconda/envs/rpymat-conda-env -c conda-forge pynwb
# Requires setting up Python environment
# run `ieegio::install_pynwb()` to set up environment first
if (FALSE) { # \dontrun{
# Replicating tutorial
# https://pynwb.readthedocs.io/en/stable/tutorials/general/plot_file.html
library(rpymat)
# Load Python module
pynwb <- import("pynwb")
uuid <- import("uuid")
datetime <- import("datetime")
np <- import("numpy")
tz <- import("dateutil.tz")
# 2018L is 2018 as integer
session_start_time <- datetime$datetime(
2018L, 4L, 25L, 2L, 30L, 3L,
tzinfo=tz$gettz("US/Pacific"))
# ---- Create NWB file object ------------------------
nwbfile <- pynwb$NWBFile(
session_description="Mouse exploring a closed field",
identifier=py_str(uuid$uuid4()),
session_start_time=session_start_time,
session_id="session_4321",
experimenter=py_list(c("Baggins, Frodo")),
lab="Bag End Laboratory",
institution="University of Middle Earth at the Shire",
experiment_description="Thank you Bilbo Baggins.",
keywords=py_list(c("behavior", "exploration"))
)
# ---- Add subject ------------------------------------
subject <- pynwb$file$Subject(
subject_id="001",
age="P90D",
description="mouse 5",
species="Mus musculus",
sex="M"
)
nwbfile$subject <- subject
nwbfile
# ---- Add TimeSeries ------------------------------------
data <- seq(100, 190, by = 10)
time_series_with_rate <- pynwb$TimeSeries(
name="test_timeseries",
description="an example time series",
data=data,
unit="m",
starting_time=0.0,
rate=1.0
)
time_series_with_rate
nwbfile$add_acquisition(time_series_with_rate)
# ---- New Spatial positions ------------------------------------
position_data <- cbind(
seq(0, 10, length.out = 50),
seq(0, 9, length.out = 50)
)
position_timestamps = seq(0, 49) / 200
spatial_series_obj = pynwb$behavior$SpatialSeries(
name="SpatialSeries",
description="(x,y) position in open field",
data=position_data,
timestamps=position_timestamps,
reference_frame="(0,0) is bottom left corner",
)
spatial_series_obj
position_obj = pynwb$behavior$Position(
spatial_series=spatial_series_obj)
position_obj
# ---- Behavior Processing Module ------------------------------
behavior_module <- nwbfile$create_processing_module(
name="behavior", description="processed behavioral data"
)
behavior_module$add(position_obj)
nwbfile$processing$behavior
# omit some process
# ---- Write ---------------------------------------------------
f <- normalizePath(tempfile(fileext = ".nwb"),
winslash = "/",
mustWork = FALSE)
io <- pynwb$NWBHDF5IO(f, mode = "w")
io$write(nwbfile)
io$close()
} # }