Almost the same with 'reticulate'
functions, with
rpymat
enabled by default and some minor changes
(see parameter convert
and local
)
Usage
import_main(convert = FALSE)
tuple(..., convert = FALSE)
py_tuple(..., convert = FALSE)
py_help(object)
np_array(data, ...)
import(module, as = NULL, convert = FALSE, delay_load = FALSE)
r_to_py(x, convert = FALSE)
py_to_r(x)
py_to_r_wrapper(x)
py_str(object, ...)
py_run_string(code, local = TRUE, convert = FALSE)
py_bool(x)
py_dict(keys, values, convert = FALSE)
py_call(x, ...)
py_del_attr(x, name)
py_del_item(x, name)
py_eval(code, convert = FALSE)
py_get_attr(x, name, silent = FALSE)
py_set_attr(x, name, value)
py_get_item(x, key, silent = FALSE)
py_set_item(x, name, value)
py_len(x, default = NULL)
py_none()
Arguments
- convert
whether to convert
'Python'
objects to R; default isFALSE
. This is different to'reticulate'
, but less error prone: users must explicitly convert'Python'
objects to R.- object, data, x, code, keys, values, ...
passed to corresponding
'reticulate'
functions as data inputs- module, as, delay_load
import
'Python'
module as alias- local
whether to execute code locally so the memory sets free when the function ends; default is true
- name, silent, key, value, default
other parameters passing to the
'reticulate'
functions
Examples
library(rpymat)
if(interactive() && dir.exists(env_path())) {
# tuple
x <- tuple(1, 2, "a")
print(x)
# convert to R object
py_to_r(x)
# convert R object to python
y <- r_to_py(list(a = 1, b = "s"))
# get element
py_get_item(y, "a")
# get missing element
py_get_item(y, "c", silent = TRUE)
}