Encode or decode 'base64' raw or url-safe string
Usage
base64_urlencode(x)
base64_encode(x)
base64_urldecode(x)
base64_decode(x)
base64_plot(
expr,
width = 480,
height = 480,
...,
quoted = FALSE,
envir = parent.frame()
)
Value
base64_encode
, base64_plot
returns 'base64' string in
raw format; base64_urlencode
returns 'base64' string url-safe format;
base64_urldecode
returns the original string; base64_decode
returns original raw vectors.
Examples
# ---- For direct base64URI ------------------------------------
file_raw <- as.raw(1:255)
# raw base64
base64_raw <- base64_encode(file_raw)
base64_raw
#> [1] "AQIDBAUGBwgJCgsMDQ4PEBESExQVFhcYGRobHB0eHyAhIiMkJSYnKCkqKywtLi8wMTIzNDU2Nzg5Ojs8PT4/QEFCQ0RFRkdISUpLTE1OT1BRUlNUVVZXWFlaW1xdXl9gYWJjZGVmZ2hpamtsbW5vcHFyc3R1dnd4eXp7fH1+f4CBgoOEhYaHiImKi4yNjo+QkZKTlJWWl5iZmpucnZ6foKGio6SlpqeoqaqrrK2ur7CxsrO0tba3uLm6u7y9vr/AwcLDxMXGx8jJysvMzc7P0NHS09TV1tfY2drb3N3e3+Dh4uPk5ebn6Onq6+zt7u/w8fLz9PX29/j5+vv8/f7/"
as.integer(base64_decode(base64_raw))
#> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#> [19] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
#> [37] 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
#> [55] 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
#> [73] 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
#> [91] 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
#> [109] 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
#> [127] 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
#> [145] 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
#> [163] 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
#> [181] 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
#> [199] 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
#> [217] 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
#> [235] 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
#> [253] 253 254 255
# ---- For URL-save base64 ------------------------------------
# Can be used in URL
base64_url <- base64_urlencode(
paste(c(letters, LETTERS, 0:9),
collapse = ""))
base64_url
#> [1] "YWJjZGVmZ2hpamtsbW5vcHFyc3R1dnd4eXpBQkNERUZHSElKS0xNTk9QUVJTVFVWV1hZWjAxMjM0NTY3ODk"
base64_urldecode(base64_url)
#> [1] "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"
# ---- Convert R plots to base64 --------------------------------
img <- base64_plot({
plot(1:10)
}, width = 320, height = 320)
# summary
print(img)
#> <Base64DataURI: type=" opacity="1"></image>