Low-level file read and write
Source:R/aaa-docs.R
, R/fst.R
, R/ini.R
, and 3 more
low-level-read-write.Rd
Interfaces to read from or write to files with common formats.
Usage
io_read_fst(
con,
method = c("proxy", "data_table", "data_frame", "header_only"),
...,
old_format = FALSE
)
io_write_fst(x, con, compress = 50, ...)
io_read_ini(con, ...)
io_read_json(con, ...)
io_write_json(
x,
con = stdout(),
...,
digits = ceiling(-log10(.Machine$double.eps)),
pretty = TRUE,
serialize = TRUE
)
io_read_mat(
con,
method = c("auto", "R.matlab", "pymatreader", "mat73"),
verbose = TRUE,
on_convert_error = c("warning", "error", "ignore"),
...
)
io_write_mat(x, con, method = c("R.matlab", "scipy"), ...)
io_read_yaml(con, ...)
io_write_yaml(x, con, ..., sorted = FALSE)
Arguments
- con
connection or file
- method
method to read table. For
'fst'
, the choices are'proxy'
do not read data to memory, query the table when needed;
'data_table'
read as
data.table
;'data_frame'
read as
data.frame
;'header_only'
read
'fst'
table header.
For
'mat'
, the choices are'auto'
automatically try the native option, and then
'pymatreader'
if fails;'R.matlab'
use the native method (provided by
readMat
); only support 'MAT 5.0' format;'pymatreader'
use 'Python' library
'pymatreader'
;'mat73'
use 'Python' library
'mat73'
.
- ...
passed to internal function calls
- old_format
see
fst
- x
data to write to disk
- compress
compress level from 0 to 100; default is 50
- digits, pretty
for writing numeric values to 'json' format
- serialize
set to
TRUE
to serialize the data to 'json' format (with the data types, default); orFALSE
to save the values without types- verbose
whether to print out the process
- on_convert_error
for reading
'mat'
files with 'Python' modules, the results will be converted to R objects in the end. Not all objects can be converted. This input defines the behavior when the conversion fails; choices are"error"
,"warning"
, or"ignore"
- sorted
whether to sort the list; default is
FALSE
Value
The reader functions returns the data extracted from files, mostly
as R objects, with few exceptions on some 'Matlab' files. When reading a
'Matlab' file requires using 'Python' modules, io_read_mat
will
try its best effort to convert 'Python' objects to R. However, such
conversion might fail. In this case, the result might partially contain
'Python' objects with warnings.
Examples
# ---- fst ----------------------------------------------------------------
f <- tempfile(fileext = ".fst")
x <- data.frame(
a = 1:10,
b = rnorm(10),
c = letters[1:10]
)
io_write_fst(x, con = f)
# default reads in proxy
io_read_fst(f)
#> <fst file>
#> 10 rows, 3 columns (file1df0580c90fa.fst)
#>
#> a b c
#> <integer> <double> <character>
#> 1 1 -0.23212506 a
#> 2 2 -0.04722965 b
#> 3 3 1.05162974 c
#> 4 4 1.35912926 d
#> 5 5 -0.17141873 e
#> 6 6 0.33363010 f
#> 7 7 -2.56035462 g
#> 8 8 -1.69772922 h
#> 9 9 0.26858313 i
#> 10 10 -0.06892197 j
# load as data.table
io_read_fst(f, "data_table")
#> a b c
#> <int> <num> <char>
#> 1: 1 -0.23212506 a
#> 2: 2 -0.04722965 b
#> 3: 3 1.05162974 c
#> 4: 4 1.35912926 d
#> 5: 5 -0.17141873 e
#> 6: 6 0.33363010 f
#> 7: 7 -2.56035462 g
#> 8: 8 -1.69772922 h
#> 9: 9 0.26858313 i
#> 10: 10 -0.06892197 j
# load as data.frame
io_read_fst(f, "data_frame")
#> a b c
#> 1 1 -0.23212506 a
#> 2 2 -0.04722965 b
#> 3 3 1.05162974 c
#> 4 4 1.35912926 d
#> 5 5 -0.17141873 e
#> 6 6 0.33363010 f
#> 7 7 -2.56035462 g
#> 8 8 -1.69772922 h
#> 9 9 0.26858313 i
#> 10 10 -0.06892197 j
# get header
io_read_fst(f, "header_only")
#> <fst file>
#> 10 rows, 3 columns (file1df0580c90fa.fst)
#>
#> * 'a': integer
#> * 'b': double
#> * 'c': character
# clean up
unlink(f)
# ---- json ---------------------------------------------------------------
f <- tempfile(fileext = ".json")
x <- list(a = 1L, b = 2.3, c = "a", d = 1+1i)
# default is serialize
io_write_json(x, f)
io_read_json(f)
#> $a
#> [1] 1
#>
#> $b
#> [1] 2.3
#>
#> $c
#> [1] "a"
#>
#> $d
#> [1] 1+1i
#>
cat(readLines(f), sep = "\n")
#> {
#> "type": "list",
#> "attributes": {
#> "names": {
#> "type": "character",
#> "attributes": {},
#> "value": ["a", "b", "c", "d"]
#> }
#> },
#> "value": [
#> {
#> "type": "integer",
#> "attributes": {},
#> "value": [1]
#> },
#> {
#> "type": "double",
#> "attributes": {},
#> "value": [2.2999999999999998]
#> },
#> {
#> "type": "character",
#> "attributes": {},
#> "value": ["a"]
#> },
#> {
#> "type": "complex",
#> "attributes": {},
#> "value": ["1+1i"]
#> }
#> ]
#> }
# just values
io_write_json(x, f, serialize = FALSE, pretty = FALSE)
io_read_json(f)
#> $a
#> [1] 1
#>
#> $b
#> [1] 2.3
#>
#> $c
#> [1] "a"
#>
#> $d
#> [1] "1+1i"
#>
cat(readLines(f), sep = "\n")
#> {"a":[1],"b":[2.2999999999999998],"c":["a"],"d":["1+1i"]}
# clean up
unlink(f)
# ---- Matlab .mat --------------------------------------------------------
if (FALSE) { # \dontrun{
f <- tempfile(fileext = ".mat")
x <- list(a = 1L, b = 2.3, c = "a", d = 1+1i)
# save as MAT 5.0
io_write_mat(x, f)
io_read_mat(f)
# require setting up Python environment
io_read_mat(f, method = "pymatreader")
# MAT 7.3 example
sample_data <- ieegio_sample_data("mat_v73.mat")
io_read_mat(sample_data)
# clean up
unlink(f)
} # }
# ---- yaml ---------------------------------------------------------------
f <- tempfile(fileext = ".yaml")
x <- list(a = 1L, b = 2.3, c = "a")
io_write_yaml(x, f)
io_read_yaml(f)
#> $a
#> [1] 1
#>
#> $b
#> [1] 2.3
#>
#> $c
#> [1] "a"
#>
# clean up
unlink(f)